54 research outputs found

    Dysfunctional inflammation in cystic fibrosis airways: From mechanisms to novel therapeutic approaches

    Get PDF
    Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients

    Streaming Algorithms for Subspace Analysis: Comparative Review and Implementation on IoT Devices

    Get PDF
    Subspace analysis is a widely used technique for coping with high-dimensional data and is becoming a fundamental step in the early treatment of many signal processing tasks. However, traditional subspace analysis often requires a large amount of memory and computational resources, as it is equivalent to eigenspace determination. To address this issue, specialized streaming algorithms have been developed, allowing subspace analysis to be run on low-power devices such as sensors or edge devices. Here, we present a classification and a comparison of these methods by providing a consistent description and highlighting their features and similarities. We also evaluate their performance in the task of subspace identification with a focus on computational complexity and memory footprint for different signal dimensions. Additionally, we test the implementation of these algorithms on common hardware platforms typically employed for sensors and edge devices

    Low-power fixed-point compressed sensing decoder with support oracle

    Get PDF
    Approaches for reconstructing signals encoded with Compressed Sensing (CS) techniques, and based on Deep Neural Networks (DNNs) are receiving increasing interest in the literature. In a recent work, a new DNN-based method named Trained CS with Support Oracle (TCSSO) is introduced, relying the signal reconstruction on the two separate tasks of support identification and measurements decoding. The aim of this paper is to improve the TCSSO framework by considering actual implementations using a finite-precision hardware. Solutions with low memory footprint and low computation requirements by employing fixed-point notation and by reducing the number of bits employed are considered. Results using synthetic electrocardiogram (ECG) signals as a case study show that this approach, even when used in a constrained-resources scenario, still outperform current state-of-art CS approaches

    Deep Neural Oracles for Short-Window Optimized Compressed Sensing of Biosignals

    Get PDF
    The recovery of sparse signals given their linear mapping on lower-dimensional spaces can be partitioned into a support estimation phase and a coefficient estimation phase. We propose to estimate the support with an oracle based on a deep neural network trained jointly with the linear mapping at the encoder. The divination of the oracle is then used to estimate the coefficients by pseudo-inversion. This architecture allows the definition of an encoding-decoding scheme with state-of-the-art recovery capabilities when applied to biological signals such as ECG and EEG, thus allowing extremely low-complex encoders. As an additional feature, oracle-based recovery is able to self-assess, by indicating with remarkable accuracy chunks of signals that may have been reconstructed with a non-satisfactory quality. This self-assessment capability is unique in the CS literature and paves the way for further improvements depending on the requirements of the specific application. As an example, our scheme is able to satisfyingly compress by a factor of 2.67 an ECG or EEG signal with a complexity equivalent to only 24 signed sums per processed sample

    Event-based Classification with Recurrent Spiking Neural Networks on Low-end Micro-Controller Units

    Get PDF
    Due to its intrinsic sparsity both in time and space, event-based data is optimally suited for edge-computing applications that require low power and low latency. Time varying signals encoded with this data representation are best processed with Spiking Neural Networks (SNN). In particular, recurrent SNNs (RSNNs) can solve temporal tasks using a relatively low number of parameters, and therefore support their hardware implementation in resource-constrained computing architectures. These premises propel the need of exploring the properties of these kinds of structures on low-power processing systems to test their limits both in terms of computational accuracy and resource consumption, without having to resort to full-custom implementations. In this work, we implemented an RSNN model on a low-end, resource-constrained ARM-Cortex-M4-based Micro Controller Unit (MCU). We trained it on a down-sampled version of the N-MNIST event-based dataset for digit recognition as an example to assess its performance in the inference phase. With an accuracy of 97.2%, the implementation has an average energy consumption as low as 4.1μJ and a worst-case computational time of 150.4μs per time-step with an operating frequency of 180 MHz, so the deployment of RSNNs on MCU devices is a feasible option for small image vision real-time tasks

    Plantar pain is not always fasciitis

    Get PDF
    The case is described of a patient with chronic plantar pain, diagnosed as fasciitis, which was not improved by conventional treatment. Magnetic resonance imaging revealed flexor hallucis longus tenosynovitis, which improved after local glucocorticoid injection

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version
    • …
    corecore